

# ITIB, June 19-22, 2006, Warsaw

# On reversing selected performance indicators used to evaluate a set of business units

Wiesław Szczesny

Department of Econometrics and Statistics, Warsaw Agricultural University

Teresa Kowalczyk, Marek Wiech

Institute for Computer Sciences, Polish Academy of Sciences

(study partially sponsored from a grant no. 3 T11C 053 28, awarded by the MNiI)

- 1. Introduction
- 2. Basic concepts and ideas Bank Example
- 3. Reversion of performance indicators in a regular model
- 4. Reversion of performance indicators in an irregular model Sporting Event Example
- Irregular model not needing reversing Hypermarkets Example
- 6. Conclusions

### Introduction

# Preliminary reversing of some of the indicators is a very useful approach

- when ordering business units, described by a set of many performance indicators
- reversing provides a new set of traits, with as much of them, as possible strongly positively correlated
- thus the sum of new traits will have greater variability than before reversing

### Introduction

# Aims and conjectures

- to detect the latent trait which governs the ranking, and to measure variability of that trait
- the stronger is this variability, the more meaningful is the ranking
- variability should be null when all business units perform "equally well", and should increase along with departure from equality

- 1. Introduction
- 2. Basic concepts and ideas Bank Example
- 3. Reversion of performance indicators in a regular model
- 4. Reversion of performance indicators in an irregular model Sporting Event Example
- Irregular model not needing reversing Hypermarkets Example
- 6. Conclusions

# Similarity measure

- for one indicator of performance measured on the ratio scale, its variability can be evaluated by the Gini index
- for more than one indicator measured on the ratio scale it is necessary to transform the indicators to be "possibly most similar" and then use the *Gini index* of the sum of transformed indicators as their total similarity measure (or as the variability of the sum)

# **Bank Example - description**

# Performance indicators for 5 banks:

- $X_1 = ROE$  (Return of Equity)
- $X_2 = ROA$  (Return of Assets)
- X<sub>3</sub> = P/T (Personal Costs in Total Costs)
- $X_4 = C/I$  (Costs per Income)
- Z = sum of ranks for each bank

For this table *Gini index* for the sum of ranks equals:

 $\blacksquare$  *Gini*( $Z(T_1)$ ) = 0.0867

|    | Table T <sub>1</sub> |    |    |    |    |  |  |  |  |  |
|----|----------------------|----|----|----|----|--|--|--|--|--|
|    | X1                   | X2 | X3 | X4 | Z  |  |  |  |  |  |
| B1 | 5                    | 4  | 1  | 1  | 11 |  |  |  |  |  |
| B2 | 4                    | 5  | 3  | 2  | 14 |  |  |  |  |  |
| ВЗ | 3                    | 3  | 5  | 3  | 14 |  |  |  |  |  |
| B4 | 2                    | 2  | 4  | 4  | 12 |  |  |  |  |  |
| B5 | 1                    | 1  | 2  | 5  | 9  |  |  |  |  |  |

## **Dissimilarity measure**

There is well known <u>dissimilarity</u> measure for set of variables, called *maximal Spearman rho* and denoted  $\rho^*$ 

(see: T.Kowalczyk, E.Pleszczyńska, F.Ruland (eds.) "*Grade Models and Methods for Data Analysis*", Section 8.6)

For this table (and this ordering of rows and columns)

maximal Spearman Rho equals:

$$\rho *_{max}(T_{p}) = 0.3829$$

|    | Table T <sub>₁</sub> |    |    |    |    |  |  |  |  |  |
|----|----------------------|----|----|----|----|--|--|--|--|--|
|    | X1                   | X2 | X3 | X4 | Z  |  |  |  |  |  |
| B1 | 5                    | 4  | 1  | 1  | 11 |  |  |  |  |  |
| B2 | 4                    | 5  | 3  | 2  | 14 |  |  |  |  |  |
| В3 | 3                    | 3  | 5  | 3  | 14 |  |  |  |  |  |
| B4 | 2                    | 2  | 4  | 4  | 12 |  |  |  |  |  |
| B5 | 1                    | 1  | 2  | 5  | 9  |  |  |  |  |  |

# Bank Example – before reversing

|    | Table T <sub>1</sub> |    |    |    |    |  |  |  |  |
|----|----------------------|----|----|----|----|--|--|--|--|
|    | X1                   | X2 | X3 | X4 | Z  |  |  |  |  |
| B1 | 5                    | 4  | 1  | 1  | 11 |  |  |  |  |
| B2 | 4                    | 5  | 3  | 2  | 14 |  |  |  |  |
| ВЗ | 3                    | 3  | 5  | 3  | 14 |  |  |  |  |
| B4 | 2                    | 2  | 4  | 4  | 12 |  |  |  |  |
| B5 | 1                    | 1  | 2  | 5  | 9  |  |  |  |  |

table  $T_{_{1}}$  with initial rows ordering

$$\blacksquare$$
  $Gini(Z(T_1)) = 0.0867$ 

$$\rho *_{max}(T_{p}) = 0.3829$$

|    | Table T <sub>₁</sub> |    |    |    |    |  |  |  |  |  |
|----|----------------------|----|----|----|----|--|--|--|--|--|
|    | X1                   | X2 | X3 | X4 | Z  |  |  |  |  |  |
| В3 | 3                    | 3  | 5  | 3  | 14 |  |  |  |  |  |
| B2 | 4                    | 5  | 3  | 2  | 14 |  |  |  |  |  |
| B4 | 2                    | 2  | 4  | 4  | 12 |  |  |  |  |  |
| B1 | 5                    | 4  | 1  | 1  | 11 |  |  |  |  |  |
| B5 | 1                    | 1  | 2  | 5  | 9  |  |  |  |  |  |

table  $T_1$  with rows ordered according to the ranks sum Z

$$\blacksquare$$
  $Gini(Z(T_1)) = 0.0867$ 

$$\rho *_{max}(T_1) = 0.0654$$

# Bank Example – 1st reversing

Table T<sub>2</sub>

|    |    | 2  |    |         |    |  |  |  |  |
|----|----|----|----|---------|----|--|--|--|--|
|    | X1 | X2 | X3 | rev(X4) | Z  |  |  |  |  |
| B1 | 5  | 4  | 1  | 5       | 15 |  |  |  |  |
| B2 | 4  | 5  | 3  | 4       | 16 |  |  |  |  |
| ВЗ | 3  | 3  | 5  | 3       | 14 |  |  |  |  |
| B4 | 2  | 2  | 4  | 2       | 10 |  |  |  |  |
| B5 | 1  | 1  | 2  | 1       | 5  |  |  |  |  |

table  $T_2$  with variable  $X_4$  reversed

$$\blacksquare$$
  $Gini(Z(T_{2})) = 0.2321$ 

Table T<sub>2</sub>

|    | X1 | rev(X4) | X2 | X3 | Z  |
|----|----|---------|----|----|----|
| B1 | 5  | 5       | 4  | 1  | 15 |
| B2 | 4  | 4       | 5  | 3  | 16 |
| В3 | 3  | 3       | 3  | 5  | 14 |
| B4 | 2  | 2       | 2  | 4  | 10 |
| B5 | 1  | 1       | 1  | 2  | 5  |

table  $T_2$  with variable  $X_4$  reversed, ordered to maximize  $\rho^*_{max}$ 

$$\blacksquare$$
  $Gini(Z(T_2)) = 0.2321$ 

$$\rho *_{max}(T_2) = 0.1800$$

# Bank Example – 2nd reversing

Table T<sub>3</sub>

|    | X1 | rev(X4) | X2 | rev(X3) | Z  |
|----|----|---------|----|---------|----|
| B2 | 4  | 4       | 5  | 3       | 16 |
| B1 | 5  | 5       | 4  | 5       | 19 |
| ВЗ | 3  | 3       | 3  | 1       | 10 |
| B4 | 2  | 2       | 2  | 2       | 8  |
| B5 | 1  | 1       | 1  | 4       | 7  |

table  $T_3$  with variable  $X_4$  and  $X_3$  reversed

■  $Gini(Z(T_3)) = 0.2133$ 

Table T<sub>3</sub>

|    | rev(X3) | X1 | X1 rev(X4) |   | Z  |  |
|----|---------|----|------------|---|----|--|
| B5 | 4       | 1  | 1          | 1 | 7  |  |
| B1 | 5       | 5  | 5          | 4 | 19 |  |
| B4 | 2       | 2  | 2          | 2 | 8  |  |
| B2 | 3       | 4  | 4          | 5 | 16 |  |
| В3 | 1       | 3  | 3          | 3 | 10 |  |

table  $T_3$  with variable  $X_4$  and  $X_3$  reversed, ordered to maximize  $\rho^*_{max}$ 

$$\blacksquare$$
  $Gini(Z(T_3)) = 0.2133$ 

$$\rho *_{max}(T_3) = 0.2088$$

# Bank Example - conclusions

- The complete lack of negative coefficients is the "perfect" state, not always attainable, however we can name it
  - the highest possible number of nonnegative correlation coefficients achieved after reversals
- the number of pairs of columns positively correlated increases with each step of reversal
- and it is maximal in the final table

# Correlation maps for reversing

- Table T<sub>1</sub> (not reversed) shows two variables negatively correlated with the other ones
- Table  $T_2$ , with  $X_4$  reversed, has only **one** variable negatively correlated
- table T<sub>3</sub> displays positively correlated variables

| Table T <sub>1</sub> |      |      |      | Table T <sub>2</sub> |      |         |      | Table T <sub>3</sub> |  |         |     |         |     |
|----------------------|------|------|------|----------------------|------|---------|------|----------------------|--|---------|-----|---------|-----|
|                      | X1   | X2   | X3   | X4                   | X1   | rev(X4) | X2   | X3                   |  | rev(x3) | X1  | rev(X4) | X2  |
| X1                   | 1    | 0.9  | -0.3 | -1                   | 1    | 1       | 0.9  | -0.3                 |  | 1       | 0.3 | 0.3     | 0.1 |
| X2                   | 0.9  | 1    | -0.1 | -0.9                 | 1    | 1       | 0.9  | -0.3                 |  | 0.3     | 1   | 1       | 0.9 |
| X3                   | -0.3 | -0.1 | 1    | 0.3                  | 0.9  | 0.9     | 1    | -0.1                 |  | 0.3     | 1   | 1       | 0.9 |
| X4                   | -1   | -0.9 | 0.3  | 1                    | -0.3 | -0.3    | -0.1 | 1                    |  | 0.1     | 0.9 | 0.9     | 1   |

- 1. Introduction
- 2. Basic concepts and ideas Bank Example
- 3. Reversal of performance indicators in a regular model
- Reversal of performance indicators in an irregular model – Sporting Event Example
- Irregular model not needing reversing Hypermarkets Example
- 6. Conclusions

## Reversal in a regular model

- table 19 rows x 8 columns
- by discretization and aggregation of the distribution of  $(\Phi(X), \Phi(Y))$ , where:

 $\Phi$  = cdf of normal distribution N(0,1)(X, Y) = standard binormal pair: zero means, unit variances, correlation coefficient = 0.3 or 0.5 or 0.7

$$\rho$$
 = 0.3



$$\rho$$
 = 0.5



$$\rho = 0.7$$



# Reversal in a regular model

# Pearson correlation maps for $T_j(0.3)$ , j = 0, ..., 5

$$j = 0$$

| 1  | X2   | Х3   | X4   | X5    | X6    | X7    | X8    |
|----|------|------|------|-------|-------|-------|-------|
| 1  | 0.96 | 0.85 | 0.42 | -0.78 | -0.99 | -0.97 | -0.89 |
| 96 | 1    | 0.96 | 0.65 | -0.59 | -0.94 | -0.99 | -0.97 |
| 85 | 0.96 | 1    | 0.82 | -0.36 | -0.82 | -0.94 | -0.99 |
| 42 | 0.65 | 0.82 | 1    | 0.21  | -0.36 | -0.59 | -0.78 |
|    |      |      |      |       |       |       |       |

|   |   | 4 |
|---|---|---|
| • | _ | 1 |
|   |   | • |
| J |   | - |

|         | X1    | rev(X8) | X2    | X3    | X4    | X5    | X6    | X7    |
|---------|-------|---------|-------|-------|-------|-------|-------|-------|
| X1      | 1     | 0.99    | 0.96  | 0.85  | 0.42  | -0.78 | -0.99 | -0.97 |
| rev(X8) | 0.99  | 1       | 0.96  | 0.85  | 0.42  | -0.78 | -0.99 | -0.97 |
| X2      | 0.96  | 0.96    | 1     | 0.96  | 0.65  | -0.59 | -0.94 | -0.99 |
| Х3      | 0.85  | 0.85    | 0.96  | 1     | 0.82  | -0.36 | -0.82 | -0.94 |
| X4      | 0.42  | 0.42    | 0.65  | 0.82  | 1     | 0.21  | -0.36 | -0.59 |
| X5      | -0.78 | -0.78   | -0.59 | -0.36 | 0.21  | 1     | 0.82  | 0.65  |
| X6      | -0.99 | -0.99   | -0.94 | -0.82 | -0.36 | 0.82  | 1     | 0.96  |
| X7      | -0.97 | -0.97   | -0.99 | -0.94 | -0.59 | 0.65  | 0.96  | 1     |
| ,       |       |         |       |       |       |       |       |       |

| j | = | 2 |
|---|---|---|
| , |   |   |

|         | X1    | rev(X8) | X2    | rev(X7) | Х3    | X4    | X5    | X6    |
|---------|-------|---------|-------|---------|-------|-------|-------|-------|
| X1      | 1     | 0.99    | 0.96  | 0.96    | 0.85  | 0.42  | -0.78 | -0.99 |
| rev(X8) | 0.99  | 1       | 0.96  | 0.96    | 0.85  | 0.42  | -0.78 | -0.99 |
| X2      | 0.96  | 0.96    | 1     | 0.99    | 0.96  | 0.65  | -0.59 | -0.94 |
| rev(X7) | 0.96  | 0.96    | 0.99  | 1       | 0.96  | 0.65  | -0.59 | -0.94 |
| Х3      | 0.85  | 0.85    | 0.96  | 0.96    | 1     | 0.82  | -0.36 | -0.82 |
| X4      | 0.42  | 0.42    | 0.65  | 0.65    | 0.82  | 1     | 0.21  | -0.36 |
| X5      | -0.78 | -0.78   | -0.59 | -0.59   | -0.36 | 0.21  | 1     | 0.82  |
| X6      | -0.99 | -0.99   | -0.94 | -0.94   | -0.82 | -0.36 | 0.82  | 1     |

|   |   | _  |
|---|---|----|
| Ī | _ | ٠. |
|   | _ |    |
| • |   | _  |

|         | X1    | rev(X8) | X2    | rev(X7) | Х3    | rev(X6) | X4   | X5    |
|---------|-------|---------|-------|---------|-------|---------|------|-------|
| X1      | 1     | 0.99    | 0.96  | 0.96    | 0.85  | 0.85    | 0.42 | -0.78 |
| rev(X8) | 0.99  |         | 0.96  | 0.96    | 0.86  | 0.85    | 0.42 | -0.78 |
| X2      | 0.96  | 0.96    | 1     | 0.99    | 0.96  | 0.96    | 0.65 | -0.59 |
| rev(X7) | 0.96  | 0.96    | 0.99  |         | 0.96  | 0.96    | 0.65 | -0.59 |
| Х3      | 0.85  | 0.86    | 0.96  | 0.96    | 1     | 0.99    | 0.82 | -0.36 |
| rev(X6) | 0.85  | 0.85    | 0.96  | 0.96    | 0.99  | 1       | 0.82 | -0.36 |
| X4      | 0.42  | 0.42    | 0.65  | 0.65    | 0.82  | 0.82    | 1    | 0.21  |
| X5      | -0.78 | -0.78   | -0.59 | -0.59   | -0.36 | -0.36   | 0.21 | 1     |
|         | 7/1   |         |       |         |       |         |      |       |

$$j = 4$$

|         | X1   | rev(X8) | X2   | rev(X7) | Х3   | rev(X6) | rev(X5) | X4   |
|---------|------|---------|------|---------|------|---------|---------|------|
| X1      | 1    | 0.99    | 0.96 | 0.96    | 0.85 | 0.85    | 0.42    | 0.42 |
| rev(X8) | 0.99 | 1       | 0.96 | 0.96    | 0.86 | 0.85    | 0.42    | 0.42 |
| X2      | 0.96 | 0.96    |      | 0.99    | 0.96 | 0.96    | 0.65    | 0.65 |
| rev(X7) | 0.96 | 0.96    | 0.99 | 1       | 0.96 | 0.96    | 0.65    | 0.65 |
| Х3      | 0.85 | 0.86    | 0.96 | 0.96    | 1    | 0.99    | 0.82    | 0.82 |
| rev(X6) | 0.85 | 0.85    | 0.96 | 0.96    | 0.99 | 1       | 0.82    | 0.82 |
| rev(x5) | 0.42 | 0.42    | 0.65 | 0.65    | 0.82 | 0.82    | 1       | 0.99 |
| X4      | 0.42 | 0.42    | 0.65 | 0.65    | 0.82 | 0.82    | 0.99    | 1    |

$$j = 5$$

|         | X1    | rev(X8) | X2    | rev(X7) | Х3    | rev(X6) | rev(X5) | rev(X4) |
|---------|-------|---------|-------|---------|-------|---------|---------|---------|
| X1      | 1     | 0.99    | 0.96  | 0.96    | 0.85  | 0.85    | 0.42    | -0.78   |
| rev(X8) | 0.99  | 1       | 0.96  | 0.96    | 0.86  | 0.85    | 0.42    | -0.78   |
| X2      | 0.96  | 0.96    |       | 0.99    | 0.96  | 0.96    | 0.65    | -0.59   |
| rev(X7) | 0.96  | 0.96    | 0.99  | 1       | 0.96  | 0.96    | 0.65    | -0.59   |
| Х3      | 0.85  | 0.86    | 0.96  | 0.96    |       | 0.99    | 0.82    | -0.36   |
| rev(X6) | 0.85  | 0.85    | 0.96  | 0.96    | 0.99  |         | 0.82    | -0.36   |
| rev(X5) | 0.42  | 0.42    | 0.65  | 0.65    | 0.82  | 0.82    | 1       | 0.21    |
| rev(X4) | -0.78 | -0.78   | -0.59 | -0.59   | -0.36 | -0.36   | 0.21    | 1       |

# *Gini Index* against $\rho^*$

Step by step reversal of the rightmost columns resulting in

- increasing of Gini index (similarity) and
- decreasing of





The reversing stopped when 4 columns were reversed.

# *Gini Index* against $\rho^*$

- The reversal from previous plot, transformed into the unit square
- the points are connected by segments forming linear normalized graphs
- to better show, how they overlap



# Regular model - conclusions

- Each quintiple of points seems to lie on the plot of regularly decreasing function
- Therefore: for a fixed  $\rho$  dissimilarity measure  $\rho *_{max}(T_j(\rho))$  is **opposite** to the similarity measure  $Gini(Z(\rho))$
- "Bank graph" shape outlies from these three graphs, but the departure is not large
- Future plans: Bank Example will be compared with ranked data from the regular model – ranks will behave differently than the original ratio data

- 1. Introduction
- 2. Basic concepts and ideas Bank Example
- 3. Reversion of performance indicators in a regular model
- 4. Reversion of performance indicators in an irregular model Sporting Event Example
- Irregular model not needing reversing Hypermarkets Example
- 6. Conclusions

# **Sporting Event Example**

- The ranks given by 4 judges  $(J_1, ..., J_4)$
- 19 competitors  $(c_6, c_7, c_{11}, \dots, c_{88})$  assessed

### The aim:

to diagnose judges assessing participants "almost in reverse to the remaining judges" and to increase variability (to make ranking more meaningful)

### Raw data map

|     | J1 | J2 | J3 | J4 | Z  |
|-----|----|----|----|----|----|
| c35 | 19 | 18 | 2  | 1  | 40 |
| c76 | 15 | 10 | 1  | 2  | 28 |
| c60 | 16 | 15 | 3  | 3  | 37 |
| с7  | 17 | 17 | 5  | 4  | 43 |
| c28 | 18 | 19 | 8  | 6  | 51 |
| c32 | 12 | 9  | 4  | 5  | 30 |
| c77 | 13 | 14 | 7  | 7  | 41 |
| с9  | 14 | 16 | 10 | 9  | 49 |
| c10 | 8  | 8  | 6  | 8  | 30 |
| с6  | 10 | 11 | 13 | 10 | 44 |
| c87 | 9  | 12 | 16 | 12 | 49 |
| c70 | 11 | 13 | 18 | 15 | 57 |
| c67 | 7  | 6  | 15 | 13 | 41 |
| c82 | 5  | 4  | 9  | 11 | 29 |
| c45 | 6  | 5  | 17 | 16 | 44 |
| c17 | 4  | 7  | 19 | 19 | 49 |
| c11 | 3  | 3  | 11 | 14 | 31 |
| c43 | 2  | 2  | 14 | 17 | 35 |
| c88 | 1  | 1  | 12 | 18 | 32 |

# Sporting Event Example

### Table $T_1$ - initial correlation map

$$Gini(Z(T_1)) = 0.1194$$
 $\rho *_{max}(T_1) = 0.4540$ 

J1 J2 J3 J4

J1 0.94 -0.64 -0.87

J2 0.94 1 -0.42 -0.71

J3 -0.64 -0.42 1 0.9

J4 -0.87 -0.71 0.9 1

### Table $T_3$ with $J_4$ and $J_3$ reversed

$$Gini(Z(T_3)) = 0.2830$$

| ho | $*_{max}(I)$ | $T_3 =$ | 0.2377 |
|----|--------------|---------|--------|
|    |              |         |        |

|         | rev(J3) | rev(J4) | J1   | J2   |
|---------|---------|---------|------|------|
| rev(J3) | 1       | 0.9     | 0.64 | 0.42 |
| rev(J4) | 0.9     | 1       | 0.87 | 0.71 |
| J1      | 0.64    | 0.87    | 1    | 0.94 |
| J2      | 0.42    | 0.71    | 0.94 | 1    |

### Table $T_{2}$ with $J_{4}$ reversed

$$Gini(Z(T_{\gamma})) = 0.1765$$

$$\rho *_{max}(T_{\gamma}) = 0.3629$$

|         | mux 2 |    |    |
|---------|-------|----|----|
| rev(J4) | J1    | J2 | J3 |

| rev(J4) | 1    | 0.87  | 0.71  | -0.9  |
|---------|------|-------|-------|-------|
| J1      | 0.87 | 1     | 0.94  | -0.64 |
| J2      | 0.71 | 0.94  | 1     | -0.42 |
| J3      | -0.9 | -0.64 | -0.42 | 1     |

### Table $T_4$ with reversed: $J_4$ , $J_3$ and $J_2$

$$Gini(Z(T_1)) = 0.2830$$

$$\rho *_{max}(T_4) = 0.3656$$

| rev(J2) | rev(J3) | rev(J4) | ) J1  |
|---------|---------|---------|-------|
| 167(34) | 167(33) | 100(04) | , , , |

| rev(J2) | 1     | -0.42 | -0.71 | -0.94 |
|---------|-------|-------|-------|-------|
| rev(J3) | -0.42 | 1     | 0.9   | 0.64  |
| rev(J4) | -0.71 | 0.9   | 1     | 0.87  |
| J1      | -0.94 | 0.64  | 0.87  | 1     |

# **Sporting Event Example**

- before reversal
- ordered by GCA

|     | J1 | J2 | J3 | J4 | Z  |
|-----|----|----|----|----|----|
| c35 | 19 | 18 | 2  | 1  | 40 |
| c76 | 15 | 10 | 1  | 2  | 28 |
| c60 | 16 | 15 | 3  | 3  | 37 |
| с7  | 17 | 17 | 5  | 4  | 43 |
| c28 | 18 | 19 | 8  | 6  | 51 |
| c32 | 12 | 9  | 4  | 5  | 30 |
| c77 | 13 | 14 | 7  | 7  | 41 |
| с9  | 14 | 16 | 10 | 9  | 49 |
| c10 | 8  | 8  | 6  | 8  | 30 |
| c6  | 10 | 11 | 13 | 10 | 44 |
| c87 | 9  | 12 | 16 | 12 | 49 |
| c70 | 11 | 13 | 18 | 15 | 57 |
| c67 | 7  | 6  | 15 | 13 | 41 |
| c82 | 5  | 4  | 9  | 11 | 29 |
| c45 | 6  | 5  | 17 | 16 | 44 |
| c17 | 4  | 7  | 19 | 19 | 49 |
| c11 | 3  | 3  | 11 | 14 | 31 |
| c43 | 2  | 2  | 14 | 17 | 35 |
| c88 | 1  | 1  | 12 | 18 | 32 |
|     |    |    |    |    |    |

- after reversal
- ordered by Z

|     | rev(J3) | rev(J4) | J1 | J2 | Z  |
|-----|---------|---------|----|----|----|
| c88 | 8       | 2       | 1  | 1  | 12 |
| c43 | 6       | 3       | 2  | 2  | 13 |
| c17 | 1       | 1       | 4  | 7  | 13 |
| c45 | 3       | 4       | 6  | 5  | 18 |
| c11 | 9       | 6       | 3  | 3  | 21 |
| c67 | 5       | 7       | 7  | 6  | 25 |
| c82 | 11      | 9       | 5  | 4  | 29 |
| c70 | 2       | 5       | 11 | 13 | 31 |
| c87 | 4       | 8       | 9  | 12 | 33 |
| c6  | 7       | 10      | 10 | 11 | 38 |
| c10 | 14      | 12      | 8  | 8  | 42 |
| с9  | 10      | 11      | 14 | 16 | 51 |
| c32 | 16      | 15      | 12 | 9  | 52 |
| c77 | 13      | 13      | 13 | 14 | 53 |
| c76 | 19      | 18      | 15 | 10 | 62 |
| c28 | 12      | 14      | 18 | 19 | 63 |
| c60 | 17      | 17      | 16 | 15 | 65 |
| с7  | 15      | 16      | 17 | 17 | 65 |
| c35 | 18      | 19      | 19 | 18 | 74 |

- 1. Introduction
- 2. Basic concepts and ideas Bank Example
- 3. Reversion of performance indicators in a regular model
- 4. Reversion of performance indicators in an irregular model Sporting Event Example
- Irregular model not needing reversing Hypermarkets Example
- 6. Conclusions

# **Hypermarkets Example**

- 19 Finnish hypermarkets (1990)
- 4 performance indicators (*profit before taxes, sales profit, net profit/staff hours, net profit/sales space in m*<sup>2</sup>) on rank scale
- all indicators positively correlated
- reversal algorithm did not indicate reversals
- $Gini(Z(T_{\nu})) = 0.1768$

$$-\rho *_{max}(T_{p}) = 0.1659$$

|              | PROF | SPRO | NPPH | NPPS | Z  |
|--------------|------|------|------|------|----|
| Jyvaskyla    | 1    | 2    | 1    | 1    | 5  |
| Kouvola      | 2    | 4    | 2    | 3    | 11 |
| Kokkola      | 4    | 3    | 3    | 2    | 12 |
| Tampere      | 3    | 8    | 6    | 6    | 23 |
| Raahe        | 11   | 5    | 4    | 5    | 25 |
| Pietarsaari  | 9    | 6    | 10   | 7    | 32 |
| Joensuu      | 7    | 10   | 8    | 11   | 36 |
| Oulu         | 5    | 7    | 15   | 9    | 36 |
| Raisio       | 14   | 1    | 9    | 13   | 37 |
| Kotka        | 8    | 11   | 5    | 14   | 38 |
| Piispanristi | 10   | 15   | 7    | 8    | 40 |
| Malmi        | 6    | 9    | 17   | 12   | 44 |
| Forssa       | 16   | 19   | 13   | 4    | 52 |
| Seinajoki    | 15   | 12   | 12   | 17   | 56 |
| Turku        | 13   | 17   | 11   | 16   | 57 |
| Varkaus      | 17   | 13   | 14   | 15   | 59 |
| Pori         | 12   | 16   | 16   | 18   | 62 |
| lisalmi      | 18   | 18   | 18   | 10   | 64 |
| Vaasa        | 19   | 14   | 19   | 19   | 71 |

No need for reversal, matrix ordered by Z value



## Reversing in irregular data sets

- Original graph with irregular models compared with the regular models and the Bank Example
- The irregular models surprisingly well fit the regular, reversed models



- 1. Introduction
- 2. Basic concepts and ideas Bank Example
- Reversal of performance indicators in a regular model
- Reversal of performance indicators in an irregular model – Sporting Event Example
- Irregular model not needing reversing Hypermarkets Example
- 6. Conclusions

### **Conclusions**

- Reversing provides a new set of traits, with as much of them, as possible strongly positively correlated; thus the sum of new traits have greater variability than before reversing
- Reversal is essential for a proper juxtaposition of total similarity measures with total dissimilarity measures
- Likeness and regularity of the graphs (for various values of  $\rho$ ) in regular models suggest that we can treat *Gini* index as a very regularly decreasing function of the maximal Spearman rho ( $\rho *_{max}$ )
- Yet simple reversing is suitable for ranked data or for extremely regular data on a ratio scale



# Thank you!

Please visit us at: <a href="http://gradestat.ipipan.waw.pl">http://gradestat.ipipan.waw.pl</a>

### References

- [1] T.Kowalczyk, E.Pleszczyńska, F.Ruland (eds), *Grade Models and Methods for Data Analysis*, Studies in Fuzziness and Soft Computing No 151. Berlin-Heidelberg-New York, Springer, 2004, pp. 1-477.
- [2] P.Korhonen, A.Siljamäki, "Ordinal principal component analysis Theory and an application", *Computational Statistics & Data Analysis*, vol. 26, pp. 411-424, 1998.
- [3] S.Mustonen, "A measure for total variability in multivariate normal distribution", *Computational Statistics & Data Analysis*, vol. 23, pp. 321-334, 1997.
- [4] J.C.Yue, M.K.Clayton, "A Similarity Measure Based on Species Proportions", *Communication in Statistics Theory and Methods*, vol. 34, pp. 2123-2131, 2005.
- [5] http://gradestat.ipipan.waw.pl
- [6] P.L.Conti, "On some descriptive aspects of measures of monotone dependence", *Metron*, vol. LI 3-4, pp. 43-60, 1993.
- [7] R.Fountain, "A class of closeness criteria", Communication in Statistics Theory and Methods, vol. 29(8), pp. 1865-1883, 2000.